Polarized Cell Motility Induces Hydrogen Peroxide to Inhibit Cofilin via Cysteine Oxidation
نویسندگان
چکیده
Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles.
منابع مشابه
Chemical dissection of an essential redox switch in yeast.
Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its environment via a redox relay system comprising the thiol peroxidase Gpx3 and transcription factor Yap1. In this signaling pathway, a central unresolved question is whether cysteine sulfenic acid modification of Gpx3 is required for Yap1 activation in cells. Here we report that cell-permeable chemical probes, which...
متن کاملReactive oxygen species and hydrogen peroxide generation in cell migration.
Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although t...
متن کاملRegulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells
Hydrogen peroxide is a key mediator of oxidative stress known to be important in various cellular processes, including apoptosis. B-cell lymphoma-2 (Bcl-2) is an oxidative stress-responsive protein and a key regulator of apoptosis; however, the underlying mechanisms of oxidative regulation of Bcl-2 are not well understood. The present study investigates the direct effect of H2O2 on Bcl-2 cystei...
متن کاملReversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the ...
متن کاملDistinct Mechanism of Cysteine Oxidation-Dependent Activation and Cold Sensitization of Human Transient Receptor Potential Ankyrin 1 Channel by High and Low Oxaliplatin
Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence suggests that transient receptor potential ankyrin 1 (TRPA1) is responsible. TRPA1 is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin interrupts hydroxylation of a proline residue located ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2015